

BRIEF INFORMATION Oil pressure and temperature sensor (OPS+T)

- > Continuous measurement of the oil pressure
- > Continuous measurement of the oil temperature
- > Rugged and reliable design

PRODUCT FEATURES

Application

The oil pressure and temperature sensor OPS+T is used to measure the absolute oil pressure and the oil temperature directly in the main oil channel behind the oil filter.

It uses the pressure value for demand-responsive control of mechanical or electrical oil pumps. This minimizes CO₂ emissions and reduces fuel consumption. Recording the temperature is used as input data for thermal management of the engine. The two signals are evaluated in the higher-level control unit.

Usable in harsh environments thanks to the integration of the multi-chip module.

Design and function

The OPS+T is based on a multi-chip module (MCM), consisting a piezo-resistive cell for measuring the absolute pressure as well as an ASIC for the digital evaluation and further processing of the information. The oil temperature can also be established using a diode which is integrated in the MCM. The PWM output signal is used to transmit both the oil pressure as well as the oil temperature. The engine control unit (ECU) evaluates the PWM output signal from the sensor. The patented technology guarantees leak tightness in view of oils.

EXTERNAL CIRCUITRY IN THE CONTROL UNIT

A 10 k Ω pull-up resistor should be integrated in the ECU of the vehicle in order to define an idle mode. For optimum reading of the PWM signal, a capacitance of max. 2.2 nF should be integrated so as to compensate for the oscillations.

TECHNICAL DETAILS

Technical data

Operating voltage range	Single-voltage (4.75 – 5.25 V)			
Rated voltage	5 V			
Supply voltage	4.75 to 5.25 V			
Pressure measuring range	0.5 to 10.5 bar			
Temperature measuring range	- 40 °C to +160 °C			
Temperature range	- 40 °C to +150 °C			
Max. temperature	160 °C (max. 100 h)			
Output signal	PWM			
Response time	2 ms			
Sampling frequency	< 3 kHz			
Max. operating pressure	40 bar			
Protection class	IP 69K			
Overpressure	60 bar			
Mating connector ¹⁾	Hirschmann 872-858-541 or TE Connectivity 1-1670917-1			
Approved	ECE-R10			

¹⁾ This accessory is not included in the scope of delivery.

Available from Hirschmann Automotive or TE Connectivity.

Dimensional sketch

Einbauraum

Pin assignment / electrical connection

Pin 1: Supply Pin 2: Ground Pin 3: Output

Tolerance band for pressure measurement

Temperature	0.50 – 3.00 bar	3.00 – 5.50 bar	5.50 – 10.50 bar	
70 – 160°C	± 0,15 bar	± 0,20 bar	± 0,30 bar	
20 – 70°C	± 0,15 bar	± 0,20 bar	± 0,30 bar	
0 – 20°C	± 0,20 bar	± 0,25 bar	± 0,35 bar	
-40 - 0°C	± 0,40 bar	± 0,40 bar	± 0,50 bar	

Tolerance band for temperature measurement					
Temperature	Accuracy				
135 – 160°C	± 1 K				
20 – 135°C	± 2 K				
-40 – 20°C	± 3 K				

STRUCTURE

- 1 Seal
- 2 Diffusor 3 Thread
- 4 Electronics with multi-chip modulel 5 Plug

OUTPUT SIGNAL

A pulse width modulated signal (PWM) is used to provide temperature, pressure and diagnostic information. All the information is sent every 9,216 μ s. The higher level control unit must be able to measure the different pulse widths of the three square wave signals, which can vary from 128 μ s to 3,958 μ s. The control unit must provide a suitable sampling frequency and logic for measuring and recording the signals.

S₁: Signal, T₁: Temperature, T₂: Pressure

General information on the evaluation of PWM communication: Because of the adjustment accuracy of the oscillator and its temperature dependence, the length of a PWM frame is subject to a maximum tolerance of \pm 10 %. Serious hardware errors in the program sequence of the ASIC cancel the PWM communication and are then detectable by the control unit on account of a permanent high level.

S₁: Diagnosis signal

DC = (0,25	(S1	= 256	μs ±	25	µs) =:	> OPS fur	nctional s	state
DC = (),375	(S1	= 384	μs ±	25	µs) =:	> Pressur	e failure	
DC = (),5	(S1	= 512	μs ±	25	µs) =	> Temper	ature fai	ilure
DC = (),625	(S1	= 640	μs ±	25	µs) =:	> Hardwa	re failure	Ē

T₁: Temperature evaluation

96.9% of the PWM blocking period T1 (3968 μs) corresponds to the highest point of the measuring range of 160 °C.
3.1% of the PWM blocking period T1 (128 μs) corresponds to the lowest point of the measuring range of -40 °C.

$$T_1|_{us} = 19,2 \frac{\mu s}{sc} \cdot \text{Temp} + 896 \ \mu s$$

T₂: Pressure evaluation (T₂ Level)

96.9% of the PWM blocking period T2 (3968 μ s) corresponds to the highest point of the measuring range of 10.5 bar. 3.1% of the PWM blocking period T2 (128 μ s) corresponds to the lowest point of the measuring range of 0.5 bar.

$$T_2|_{\mu s} = 384 \frac{\mu s}{bar} \cdot Pressure - 64 \ \mu s$$

ECU calculation

Temperature =
$$\left(\frac{4096 \,\mu s}{T_{\text{PI, ist}}|_{\mu s}} \cdot T_1|_{\mu s} - 128 \,\mu s\right) \cdot \frac{1}{19,2} \frac{\circ C}{\mu s} - 40^{\circ} \text{C}$$

Diagnostics = $\left(\frac{1024 \,\mu s}{T_{\text{PSI, ist}}|_{\mu s}} \cdot S_1|_{\mu s}\right)$

Pressure =
$$\left(\frac{4096 \,\mu s}{T_{P1, ist}|_{\mu s}} \cdot T_2|_{\mu s} - 128 \,\mu s\right) \cdot \frac{1}{384} \frac{bar}{\mu s} + 0.5 \,bar$$

PROGRAM OVERVIEW

Product picture

Description

Oil pressure and temperature sensor

* Packaging unit